If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+5x-246=0
a = 6; b = 5; c = -246;
Δ = b2-4ac
Δ = 52-4·6·(-246)
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-77}{2*6}=\frac{-82}{12} =-6+5/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+77}{2*6}=\frac{72}{12} =6 $
| 9766x+8866x-87800=180 | | c/22-4.3=11.5 | | 2n+3(-4n-1)=-63 | | 8.9x-5=-6.8x+8 | | g+161=996 | | (2x+9)(17x-34)=0 | | r/3+4=-1 | | 10+5x=10-4x | | 2x+09097=89x-654333333333333333 | | -2=2s+8 | | 3=p/3+2 | | 4x²-25x=21 | | 5x+3=-18+2x | | 1=3b+10 | | -228=6(-5p+2) | | y/8+2=1 | | 17=12x-9x+2 | | 9x+3=-45+3x | | 9(8^(3x))=7 | | 4q-2=6 | | 6x+5=17+4x | | -11+3r+3r=8r-1 | | 8-s=s+13 | | 15=-5-n | | 2/3t^2+17/6t=-5/2 | | 1+2f=-5 | | 1+(6x)=-5 | | 2x^=0 | | 1/5x-4=2/7x+5 | | 1=10-h | | 5=8-v | | 6=-8-8k-2 |